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Abstract

This project attempts to gain insight into how the cortex functions during natu-
ral vision using electrocorticographic (ECoG) data collected from human epileptic
patients at Rhode Island Hospital who underwent surgical treatment for their condi-
tion. Our approach offers a major departure from existing research in brain sciences.
Instead of simplistic, highly constrained stimuli, patients are shown a movie/film of
their choosing while we record neural and eye tracking data. Using this data, we
can study the brain mechanisms underlying natural everyday vision using complex
dynamic visual scenes – when participants are free to move their eyes and shift their
attention. Also, since the viewing condition is not cognitively taxing and is actually
pleasurable (compared to typical behavioral electrophysiological experiments), the
amount of data we can acquire with this experimental approach far surpasses that
of a conventional experiment.
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1. Introduction

1.1. Motivation

Most previous work in neuroscience has focused on the brain mechanisms underlying
the rapid recognition of simple and often artificial, static, isolated stimuli. These
experimental paradigms attempt to control as many variables as possible and isolate
or randomize potentially confounding variables. Although these experiments have
obvious advantages and were effective in the past, such experimental protocols seem
to overlook the distinctive complexity of natural, everyday perception. In reality,
the world is full of dynamic and highly complex. For example, natural visual scenes
usually consist of many objects embedded in background clutter. Despite this, very
little is known about how our visual cortex deals with these noisy and ambiguous
images.

Our approach offers a major departure from existing research in brain sciences.
Instead of simplistic, highly constrained stimuli, patients are shown a movie/film of
their choosing while we record neural and eye tracking data. Using this data, we
can study the brain mechanisms underlying natural everyday vision using complex
dynamic visual scenes – when participants are free to move their eyes and shift their
attention. Also, since the viewing condition is not cognitively taxing and is actually
pleasurable (compared to typical behavioral electrophysiological experiments), the
amount of data we can acquire with this experimental approach far surpasses that
of a conventional experiment.

The data for this project was collected from patients who have intractable epilepsy.
Using an invasive electrophysiological technique called electrocorticography (ECoG)
we were able to collect neural data at much higher temporal and spatial resolution
than traditional, non-invasive imaging techniques. This method uses intracranially
implanted electrodes which clinicians use during resective surgical treatment for
intractable epilepsy.

In this treatment, the patient undergoes a craniotomy and is implanted with in-
tracranial electrodes used to find epileptogenic zones. Typically, the patient is mon-
itored for seizures for over a week. We used this chunk of idle time to collect neural
data from patients using the same electrodes they are being monitored with. In
addition to neural data, we record eye tracking data using a head-free eye tracking
device. The combination of eye tracking data and precise annotation of the videos
shown to the patient means we know exactly what they see.
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1.2 Goals

1.2. Goals

The primary goal of the research questions mentioned above is to provide a compre-
hensive characterization of the functional anatomy of natural vision, which will, in
turn, inform the development of computational models of the visual cortex.

The intellectual merits of this project include:

1. Significant advances in our scientific understanding of the computational mech-
anisms underlying object recognition, scene processing, and visual attention

2. Development of rigorous computational methods to leverage big neuroscience
data

3. Development of large-scale annotated stimulus sets and physiological predic-
tions.
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2. Methods

2.1. Neural Data Acquisition

In previous work, Prof. Thomas Serre has shown that abstract object category
information can be decoded from occipital and inferior temporal areas by using neu-
ral decoding techniques (see [ZMB+11, RTS10]). Our previous research experience
with this type of patient population has proven that the clinical criteria for electrode
placements typically provide sufficient coverage to address the research questions we
formulated above.

The experimental data has been recorded at Rhode Island Hospital as part of the
NeuroPort project. The NeuroPort project (Investigation of Neuronal Activity in
Patients with Epilepsy at Rhode Island Hospital; Potter, PI) is an IRB-approved,
active protocol permitting electrophysiologic recording from scalp electrodes, clinical
subdural macroelectrodes (grid, strip, and depth electrodes) and research microelec-
trodes and microwires implanted in patients who are already undergoing craniotomy
and implantation of clinical electrodes for epilepsy surgery evaluation. Participants
also permit us the use of clinical and research data collected (EEG, ECoG, video,
CT/MRI, and medical record).

Figure 2.1.: Electrode placements for subjects #1 and #2 respectively

Two patients have been successfully recorded at Rhode Island Hospital. The elec-
trode placements are shown above in Fig. 2.1. The neural data was acquired via the
Blackrock Microsystems NeuroPort system. They were pre-processed using a notch
filter at 60 Hz to remove line noise.
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2.2 Gaze Data Acquisition
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Figure 2.2.: Frequency spectrum before/after neural data pre-processing

2.2. Gaze Data Acquisition

To acquire the gaze data during the experiment, we used the SR Research Eyelink
1000 system. We chose this system because it is head-free. In other words, the
patient does not need to wear any equipment and can simply lie in his/her hospital
bed. To correct for variations in head pose, the Eyelink system tracks the head
pose using a small sticker worn on the forehead. In addition, the Eyelink offers high
spatial resolution (sub-degree gaze accuracy), pupilometry data acquistion, and a
high sampling rate.

The Eyelink system consists of a host PC running SR Research’s custom host oper-
ating system and software.

2.3. Data Synchronization

Data synchronization was a big issue in this experiment as we needed extremely
high temporal precision in our neural data analysis. Four things needed to be
synchronized: visual stimuli, audio stimuli, the neural data , and the eye tracking
data. To do this, we custom built a experiment apparatus that delivered stimuli
with extremely high temporal precision.

We used a National Instruments Data Acquisition (DAQ) card to send digital trig-
gers into the Blackrock Microsystems NeuroPort system. Triggers contained frame
information and included other useful information such as frame refresh, trial onset,
movie start, movie paused, movie ended, etc. To synchronize the start of recording
with the Eyelink, we had the behavioral computer send messages over ethernet to the
Eyelink. In addition, we used the analog output of the Eyelink as extra validation
that our data synchronization was accurate.
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2.3 Data Synchronization

Figure 2.3.: Tracking gaze with the SR Research Eyelink 1000 system

Audiovisual stimuli were presented using gstreamer plugin for Psychtoolbox, a psy-
chophysics toolbox for MATLAB. This toolbox allowed us to present our stimuli
with extremely little lag and high temporal precision. We presented the visual stim-
uli on a 27” monitor at 120 Hz. The high screen refresh rate allows us to play video
at higher frame-rates, even though for these experiments the source files were all
around 25 Hz.

Video Title Duration Number of Faces Shot
(min:sec) saccades annotated boundaries

Subject Caso Cerrado #1 8:00 1,185 350 132
#1 Caso Cerrado #2 8:06 1,087 350 132

Subject Anchorman 97:25 7,382 3,950 1,400
#2 Parks & Recreation 21:28 1,203 1,050 400

Table 2.1.: Data statistics

After the data acquisition, we analyze the content of the selection of videos that
the participant could choose from, to the extent that objects and individuals in
every scene are identified and localized. The analysis phase for neural data will
commence by aggregating the information from both the experimental and computer
vision sides. This aggregate information will reveal the visually driven brain states
associated with object and scene recognition during natural viewing.
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2.4 Automated Video Annotation

Figure 2.4.: Building the experimental apparatus
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Figure 2.5.: Digital/analog trigger synchronization

2.4. Automated Video Annotation

GOING TO RE-WRITE / PARAPHRASE

On the computer vision side, the primary objective has been to build a computer
vision architecture for automated frame-based annotation of the content in the com-
mercial movie and television productions. To leverage the manual annotation of
hundreds of thousands of video frames (which would be prohibitively long by hand),
we exploit recent innovations in computer vision and machine learning. Our own
prior work in automated behavioral analysis of rodent behaviors ([JGY+10]) sug-
gests that computer vision is sufficiently mature to help automate the annotation
of objects and actions in videos. This system provides an in-depth analysis of the
visual content of the scenes, showing the precise locations and identity of fixated
objects in the scene. This analysis will be done off-line and will be supervised by a
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2.4 Automated Video Annotation

human observer who will interact with the system when uncertainty in identification
is present, refining the system’s predictions for the future.

Figure 2.6.: Annotation interface screenshots

At its core the Serre Lab’s video annotation interface is a rich HTML5 video player,
which streams media from a central server that also hosts the database system.
This new video annotation tool allows us to easily and efficiently create accurate
annotations from lengthy videos. By harnessing the new and powerful features of
HTML5 and CSS3, we were able to develop a computer vision tool that runs in all
major web browsers. The process for annotating a video starts with an automatic
“shot-detection” that segments the video into discrete shots. The interface then
automatically detects all the faces in the video and assigns bounding boxes to them.

The interface can be used for annotation in two ways: Automatic face detection
algorithms built-in to the interface can detect the all of the faces in a given movie
(or a part of the movie) and the annotator would assign identities to these detec-
tions. The user can correct/edit all of the automatic detections and create new ones
manually. Moreover, the user can select arbitrary objects in any scene, including
but not limited to faces, and track their movement throughout the scene by using an
automated video tracker. All of the annotations are stored in one central server in
real-time without any possibility of data loss. This workflow lets users easily iden-
tify and keep track of detections, something that took many hours of tedious work
with previous methods. In fact, with the use of modern user interface concepts, our
estimate is that this dataset reduces the frame-by-frame annotation time of videos
by hundreds of orders of magnitude. The interface also has built-in tools to facilitate
collaborative work. All changes on the annotations are saved to the same central
database, allowing for users to quickly and dynamically see what others have done
without overwriting.

By integrating a well-established work manager (Asana) in the interface researchers
can click a single button and all of the annotators assigned to the project in the
work group will receive a task on their todo-list that outlines the specific shots in
the video they are required to annotate.

After selecting an algorithm, an annotator can use the current shot, the whole video,
or manually enter start and end times to specify the segment of the video to run
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2.5 Neural Decoding

the algorithm on. Then all they have to do is click the ‘Run’ button and wait for it
to finish processing. That’s it - the interface backend automatically inserts the data
into its proper place in the central database and gives the results back to the user
in real time, updating the interface display with the new detections.

2.5. Neural Decoding
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