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Abstract—Principal component analysis extracts 
dimensions of the greatest variance in a dataset 
and allows for dimensionality reduction via 
projection onto these dimensions. In the case of 
high-dimensional data, this process is 
computationally intensive, as it traditionally 
requires solving the eigenvalue problem for a very 
large covariance matrix. Recently, neural 
network-inspired learning rules have provided 
iterative methods for encoding features of dataset 
as synaptic weights. Here, we present the results 
of the implementation of the Generalized Hebbian 
Algorithm on a dataset of facial images and 
experiment with a Sanger’s rule–like extension of 
the BCM rule, as well. We show GHA to quickly 
and iteratively converge to the first p principal 
components in order of descending eigenvalue and 
the modified BCM rule to converge to more 
complex features. 
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Introduction 

 
Principal component analysis 
In image processing, it is often desirable to reduce 
the dimensionality of datasets. Such dimensionality 
reduction is necessary for interpreting quantitative 
differences between images and—if constituent 
algorithms are biologically inspired—speculating on 
neural mechanisms for encoding such data. Principal 
component analysis (PCA) is a linear orthogonal 
transform that provides a direct method for 
dimensionality reduction, in which a dataset is 
projected onto the first p eigenvectors of the 
covariance matrix of the data (zero mean correlation 

matrix). These projected dimensions are referred to 
as principal components. Specifically, for a given 
dataset of dimensionality D1, PCA finds a subspace 
of dimensionality D2 where D2 < D1 and, 
importantly, each principal dimension is orthogonal 
to all others. While many techniques for PCA exist, 
projection onto this linear space generally 
maximizes the variance of the projected data.  
 
In image processing, PCA can be used for image 
compression, reconstruction, classification, and 
recognition problems (e.g, Wang, 2012).  
 
Hebbian learning 
Practically, it is both desirable and biologically 
plausible to evolve such an algorithm iteratively 
over time. Such a paradigm allows for fast feature 
learning, which is useful, for example, in facial 
recognition implementations (Ebied et al., 2012). 
Hebbian learning (Hebb, 1949) provides a neural 
framework for understand such a process. In 
standard Hebbian learning, a single time-dependent 
output neuron y(t) dynamically modifies its firing 
rate at time t 
 

𝑦 𝑡 = 𝒘!(𝑡)𝒙!, 
 
using 
 

𝒘 𝑡 + 1 = 𝒘 𝑡 + 𝜂𝑦 𝑡 𝒙!, 
 
where 𝜂 is the learning rate, w is the synaptic weight 
vector from input to output, and xt is an input vector 
at time t. Without bound, this paradigm causes w to 
increase to infinity. Oja (Oja, 1982) modified the 
Hebb rule by adding a multiplicative weight-decay 
term to the weight update rule: 



 
𝒘 𝑡 + 1 = 𝒘 𝑡 + 𝜂𝑦 𝑡 (𝒙! − 𝑦 𝑡 𝒘(𝑡)), 

 
or, with rearrangement, 
 

𝒘 𝑡 + 1 = 𝒘 𝑡 + 𝜂𝑦 𝑡 𝒙! − 𝜂𝑦! 𝑡 𝒘(𝑡) 
 
which normalizes the weight vector and causes it to 
converge to the principal eigenvector of the 
covariance matrix. Some implementations may 
require different learning rates for each term. 
 
Oja’s rule, however, only works for a single linear 
output neuron. In order to learn additional 
components, more outputs are necessary. In 1989, 
Sanger introduced the Generalized Hebbian 
Algorithm (GHA), which accommodates multiple 
outputs (Sanger, 1989). This approach is also known 
as Sanger’s rule, 
 

𝒘! 𝑡 + 1 = 𝒘! 𝑡 + 𝜂!𝑦! 𝑡 (𝒙! − 𝒘!(𝑡)𝑦!(𝑡)
!

!!!

) 

 
where i = 1, 2, …, p. The GHA learns the first p 
eigenvectors of the covariance matrix in order of 
decreasing eigenvalue. It can be shown that Sanger’s 
rule is equivalent to performing Oja’s rule for each 
component while normalizing using Graham-
Schmidt orthonormalization (Qiu et al., 2012). 
 
Here, we experiment with GHA and related 
techniques, including the Bienenstock-Cooper-
Munro rule, in the case of two-dimensional inputs as 
well as in image space using a facial image database. 
 

Methods 
 

All computation was done using the MATLAB 
software package. A brief outline of the 
methodology follows: 
	
  

A. Load/Preprocess images 
a. Convert to grayscale, resize, and 

vectorize 
b. Tile input images, permute 
c. Zero-mean the input images 

B. Calculate components 
a. Run GHA algorithm 
b. Run BCM algorithm 

 

 
Image loading/preprocessing 
We experimented with the Generalized Hebbian 
Algorithm in the case of two dimensions and 10000 
dimensions. In the two dimensional case, input 
vectors were random inputs iteratively drawn and 
presented from a covariance matrix. Higher 
dimensional data, in the form of facial images, came 
from the FGnet Aging Data Base (Face and Gesture 
Working Group, 2004), a database of 1002 grayscale 
and color face images at various lighting conditions 
and ages. We imported the faces into MATLAB and 
center-cropped the faces to 100 x 100 grayscale 
pixels. We then vectorized the images and 
concatenated the vectors into a final input matrix of 
size 10000 x 1002. Additionally, it was necessary to 
tile and permute the input images. This gave GHA 
more time to converge to the principle components.  
 
We also zero-meaned the input by subtracting the 
“mean face” from each input image vector. Sanger’s 
rule will not learn the principle components of an 
input without this normalization step. 
 
GHA implementation 
GHA was implemented locally using iterative 
Graham-Schmidt orthonormalization and subtraction 
of an Oja term. That is, whole images were 
presented as individual inputs and synaptic weights 
were computed serially for each image. Each 
consecutive synaptic weight was computed by 
performing Oja’s rule on a modified input created by 
subtracting off the projected energy from all 
previously computed weights. Thus, all weights 
converged approximately simultaneously.  
 
In running GHA, we used additional parameters to 
ensure convergence of the algorithm:𝜏! = 15000 
(synaptic decay), 𝛼 = 0.1  (separate weight of the 
Oja term), and 𝜂 = 0.8 (learning rule, in this case, 
constant). We attempted to learn the first four 
principal components. 
 
BCM rule 
In our third set of experiments, we attempted to 
extend the Bienenstock-Cooper-Munro (BCM) rule 
to higher dimensions and multiple, iterative outputs. 
The BCM rule is another synaptic modification rule, 
in which changes in the weight matrix are tracked by 
a normalizing, post-synaptic activation function 𝜃 𝑡  
that changes sign at a threshold (Bienenstock et al., 



1982). Here, we implemented the higher-
dimensional BCM rule as 
 

𝒘 𝑡 + 1 = 𝒘 𝑡 + tanh 𝑦 𝑡 − 𝜃 𝑡 𝜂!𝒙! 
 

where 𝜃(t) is modified according to 
 

𝜃 𝑡 + 1 = 𝜃 𝑡 + 𝜂!|y t |! − 𝜃 𝑡  
 

where | . | is the absolute value function and p is a 
constant, in our simulations equal to 1.5. In order to 
extend the BCM model to multiple output units, we 
employed a Sanger-like strategy as above, 
subtracting the energy from all (i-1) previously 
computed ‘components’ when computing the ith 
‘component’. Component, here, is used relatively, as 
the BCM rule does not learn principal components. 
 
Control 
For the sake of comparison, we ran the built-in 
MATLAB PCA function on the input matrix, as well 
(i.e. on the 10000 x 10000 covariance matrix). 
 

Results 
 

In the 2D case, GHA performed as expected, as 
illustrated in Figure 1. 
 

 
Figure 1. Generalized Hebbian Algorithm with two-
dimensional inputs. Green points represent inputs, blue 
and black points represent random weight initializations 
for the first and second components, and red and pink 
points represent final stored weight vectors (equivalent to 
± eigenvectors of the covariance matrix). 

For our 10000 x 10000 image covariance matrix, 
PCA took approximately 45 minutes to run. In the 
case of facial images as inputs, GHA learned the 
first p eigenvectors of the covariance matrix of the 
image database in approximately five seconds. A 
screenshot of video of this convergence can be found 
in Figure 2. The squared error was best for the first 
component at approximately 0.01. As expected, the 
squared error increased with each further 
component, increasing from approximately 0.01 to 
1. 
 

 
 
Figure 2. Evolution of Generalized Hebbian Algorithm 
for four output units. A screenshot of the first four 
synaptic weigh vectors converging (top row). Bottom: 
convergence of the squared error between the synaptic 
weights and the eigenvectors computed in PCA. 

 
Final convergence of GHA is illustrated in Figure 3. 
 

 
 

Figure 3. Convergence of Generalized Hebbian 
Algorithm for four output units. Top: eigenvectors 
computed via PCA. Bottom: synaptic weights computed 
via GHA. 

 
The BCM rule presented more complex results. 
Without mean-centering, as illustrated in Figure 4, 
the synaptic weights appear to code for feature 
vectors that are not collinear with the principal 
components. Implementation of the BCM rule 
required careful parameter adjustment and, as 
compared to GHA, more iterations (i.e. image 



presentations) in order to converge to potentially 
relevant features. With mean-centering, as illustrated 
in Figure 5, the features appear to eventually 
converge to the first eigenvector, while the first few 
components failed to converge. 
 

 
Figure 4. Convergence of BCM rule for six output 
units without mean-centering. Feature vectors are not 
collinear with the first six eigenvectors. 
 

 
Figure 5. Convergence of BCM rule for sixteen output 
units with mean-centering. Feature vectors appear to 
eventually converge to the first eigenvector. 

 
Discussion 

 
Our GHA experiments confirmed several 
expectations. For constant learning rates, synaptic 
weights never precisely converged to the proper 
eigenvectors, though they were nearly collinear, as 
evidenced by the low mean squared error 
calculations. In order to ensure total convergence, it 
was necessary to implement time-dependent learning 
rates that approached zero over time. Without the 
time-dependency, weights tended to ‘quiver’ around 

a given eigenvector, as each presented input affected 
the weights in a constant manner. It was also 
necessary to either duplicate our input matrix several 
times or oversample a single input matrix in order to 
reach an appropriate number of iterations for 
convergence. In BCM implementation, this latter 
point was further exacerbated. 
 
Challenges in implementation pertained to extending 
our model past two dimensions. Images sit in high-
dimensional space (in this case, 10000-D space), and 
it was necessary to adjust parameters—especially 
synaptic decay terms—accordingly. Extending the 
BCM rule to image space, in particular, required 
squeezing the squared term through a hyperbolic 
tangent function in order to maintain relative 
stability. Our BCM implementation is highly 
sensitive to small changes in parameters, and further 
investigation is necessary to assure a more robust 
implementation. 
 
The BCM results do not lend themselves to easy 
interpretation. While the first few weights appear to 
code for complex features, the sixth weight seems to 
code for the mean face. As the inputs were not zero-
meaned in the case of the first BCM implementation, 
it was possible that we would achieve different 
results with zero-meaned data. However, in zero-
meaning our data, we achieved the results in Figure 
5, in which the latter features appeared to converge 
to the first eigenvector, while the first few 
‘components’ failed to converge with the present 
number of iterations. It is difficult to speculate as to 
why this might be the case, and more investigation is 
necessary to determine the appropriate functional 
relationships therein. Future work in extending the 
BCM model to higher dimensions and multiple 
outputs could provide new insight into biologically 
plausible encoding of such stimuli. 
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