
Iterative face image feature extraction with Generalized
Hebbian Algorithm and a Sanger-like BCM rule

Clayton Aldern (Clayton_Aldern@brown.edu)

Tyler Benster (Tyler_Benster@brown.edu)
Carl Olsson (Carl_Olsson@brown.edu)

Brown University Computational Neuroscience Final Project, Spring 2013

Professor Elie Bienenstock

Abstract—Principal component analysis extracts
dimensions of the greatest variance in a dataset
and allows for dimensionality reduction via
projection onto these dimensions. In the case of
high-dimensional data, this process is
computationally intensive, as it traditionally
requires solving the eigenvalue problem for a very
large covariance matrix. Recently, neural
network-inspired learning rules have provided
iterative methods for encoding features of dataset
as synaptic weights. Here, we present the results
of the implementation of the Generalized Hebbian
Algorithm on a dataset of facial images and
experiment with a Sanger’s rule–like extension of
the BCM rule, as well. We show GHA to quickly
and iteratively converge to the first p principal
components in order of descending eigenvalue and
the modified BCM rule to converge to more
complex features.

Keywords—feature extraction; image processing;
principal component analysis; Generalized
Hebbian Algorithm; Oja’s rule; Sanger’s rule;
BCM rule

Introduction

Principal component analysis
In image processing, it is often desirable to reduce
the dimensionality of datasets. Such dimensionality
reduction is necessary for interpreting quantitative
differences between images and—if constituent
algorithms are biologically inspired—speculating on
neural mechanisms for encoding such data. Principal
component analysis (PCA) is a linear orthogonal
transform that provides a direct method for
dimensionality reduction, in which a dataset is
projected onto the first p eigenvectors of the
covariance matrix of the data (zero mean correlation

matrix). These projected dimensions are referred to
as principal components. Specifically, for a given
dataset of dimensionality D1, PCA finds a subspace
of dimensionality D2 where D2 < D1 and,
importantly, each principal dimension is orthogonal
to all others. While many techniques for PCA exist,
projection onto this linear space generally
maximizes the variance of the projected data.

In image processing, PCA can be used for image
compression, reconstruction, classification, and
recognition problems (e.g, Wang, 2012).

Hebbian learning
Practically, it is both desirable and biologically
plausible to evolve such an algorithm iteratively
over time. Such a paradigm allows for fast feature
learning, which is useful, for example, in facial
recognition implementations (Ebied et al., 2012).
Hebbian learning (Hebb, 1949) provides a neural
framework for understand such a process. In
standard Hebbian learning, a single time-dependent
output neuron y(t) dynamically modifies its firing
rate at time t

𝑦 𝑡 = 𝒘!(𝑡)𝒙!,

using

𝒘 𝑡 + 1 = 𝒘 𝑡 + 𝜂𝑦 𝑡 𝒙!,

where 𝜂 is the learning rate, w is the synaptic weight
vector from input to output, and xt is an input vector
at time t. Without bound, this paradigm causes w to
increase to infinity. Oja (Oja, 1982) modified the
Hebb rule by adding a multiplicative weight-decay
term to the weight update rule:

𝒘 𝑡 + 1 = 𝒘 𝑡 + 𝜂𝑦 𝑡 (𝒙! − 𝑦 𝑡 𝒘(𝑡)),

or, with rearrangement,

𝒘 𝑡 + 1 = 𝒘 𝑡 + 𝜂𝑦 𝑡 𝒙! − 𝜂𝑦! 𝑡 𝒘(𝑡)

which normalizes the weight vector and causes it to
converge to the principal eigenvector of the
covariance matrix. Some implementations may
require different learning rates for each term.

Oja’s rule, however, only works for a single linear
output neuron. In order to learn additional
components, more outputs are necessary. In 1989,
Sanger introduced the Generalized Hebbian
Algorithm (GHA), which accommodates multiple
outputs (Sanger, 1989). This approach is also known
as Sanger’s rule,

𝒘! 𝑡 + 1 = 𝒘! 𝑡 + 𝜂!𝑦! 𝑡 (𝒙! − 𝒘!(𝑡)𝑦!(𝑡)
!

!!!

)

where i = 1, 2, …, p. The GHA learns the first p
eigenvectors of the covariance matrix in order of
decreasing eigenvalue. It can be shown that Sanger’s
rule is equivalent to performing Oja’s rule for each
component while normalizing using Graham-
Schmidt orthonormalization (Qiu et al., 2012).

Here, we experiment with GHA and related
techniques, including the Bienenstock-Cooper-
Munro rule, in the case of two-dimensional inputs as
well as in image space using a facial image database.

Methods

All computation was done using the MATLAB
software package. A brief outline of the
methodology follows:
	

A. Load/Preprocess images
a. Convert to grayscale, resize, and

vectorize
b. Tile input images, permute
c. Zero-mean the input images

B. Calculate components
a. Run GHA algorithm
b. Run BCM algorithm

Image loading/preprocessing
We experimented with the Generalized Hebbian
Algorithm in the case of two dimensions and 10000
dimensions. In the two dimensional case, input
vectors were random inputs iteratively drawn and
presented from a covariance matrix. Higher
dimensional data, in the form of facial images, came
from the FGnet Aging Data Base (Face and Gesture
Working Group, 2004), a database of 1002 grayscale
and color face images at various lighting conditions
and ages. We imported the faces into MATLAB and
center-cropped the faces to 100 x 100 grayscale
pixels. We then vectorized the images and
concatenated the vectors into a final input matrix of
size 10000 x 1002. Additionally, it was necessary to
tile and permute the input images. This gave GHA
more time to converge to the principle components.

We also zero-meaned the input by subtracting the
“mean face” from each input image vector. Sanger’s
rule will not learn the principle components of an
input without this normalization step.

GHA implementation
GHA was implemented locally using iterative
Graham-Schmidt orthonormalization and subtraction
of an Oja term. That is, whole images were
presented as individual inputs and synaptic weights
were computed serially for each image. Each
consecutive synaptic weight was computed by
performing Oja’s rule on a modified input created by
subtracting off the projected energy from all
previously computed weights. Thus, all weights
converged approximately simultaneously.

In running GHA, we used additional parameters to
ensure convergence of the algorithm:𝜏! = 15000
(synaptic decay), 𝛼 = 0.1 (separate weight of the
Oja term), and 𝜂 = 0.8 (learning rule, in this case,
constant). We attempted to learn the first four
principal components.

BCM rule
In our third set of experiments, we attempted to
extend the Bienenstock-Cooper-Munro (BCM) rule
to higher dimensions and multiple, iterative outputs.
The BCM rule is another synaptic modification rule,
in which changes in the weight matrix are tracked by
a normalizing, post-synaptic activation function 𝜃 𝑡
that changes sign at a threshold (Bienenstock et al.,

1982). Here, we implemented the higher-
dimensional BCM rule as

𝒘 𝑡 + 1 = 𝒘 𝑡 + tanh 𝑦 𝑡 − 𝜃 𝑡 𝜂!𝒙!

where 𝜃(t) is modified according to

𝜃 𝑡 + 1 = 𝜃 𝑡 + 𝜂!|y t |! − 𝜃 𝑡

where | . | is the absolute value function and p is a
constant, in our simulations equal to 1.5. In order to
extend the BCM model to multiple output units, we
employed a Sanger-like strategy as above,
subtracting the energy from all (i-1) previously
computed ‘components’ when computing the ith
‘component’. Component, here, is used relatively, as
the BCM rule does not learn principal components.

Control
For the sake of comparison, we ran the built-in
MATLAB PCA function on the input matrix, as well
(i.e. on the 10000 x 10000 covariance matrix).

Results

In the 2D case, GHA performed as expected, as
illustrated in Figure 1.

Figure 1. Generalized Hebbian Algorithm with two-
dimensional inputs. Green points represent inputs, blue
and black points represent random weight initializations
for the first and second components, and red and pink
points represent final stored weight vectors (equivalent to
± eigenvectors of the covariance matrix).

For our 10000 x 10000 image covariance matrix,
PCA took approximately 45 minutes to run. In the
case of facial images as inputs, GHA learned the
first p eigenvectors of the covariance matrix of the
image database in approximately five seconds. A
screenshot of video of this convergence can be found
in Figure 2. The squared error was best for the first
component at approximately 0.01. As expected, the
squared error increased with each further
component, increasing from approximately 0.01 to
1.

Figure 2. Evolution of Generalized Hebbian Algorithm
for four output units. A screenshot of the first four
synaptic weigh vectors converging (top row). Bottom:
convergence of the squared error between the synaptic
weights and the eigenvectors computed in PCA.

Final convergence of GHA is illustrated in Figure 3.

Figure 3. Convergence of Generalized Hebbian
Algorithm for four output units. Top: eigenvectors
computed via PCA. Bottom: synaptic weights computed
via GHA.

The BCM rule presented more complex results.
Without mean-centering, as illustrated in Figure 4,
the synaptic weights appear to code for feature
vectors that are not collinear with the principal
components. Implementation of the BCM rule
required careful parameter adjustment and, as
compared to GHA, more iterations (i.e. image

presentations) in order to converge to potentially
relevant features. With mean-centering, as illustrated
in Figure 5, the features appear to eventually
converge to the first eigenvector, while the first few
components failed to converge.

Figure 4. Convergence of BCM rule for six output
units without mean-centering. Feature vectors are not
collinear with the first six eigenvectors.

Figure 5. Convergence of BCM rule for sixteen output
units with mean-centering. Feature vectors appear to
eventually converge to the first eigenvector.

Discussion

Our GHA experiments confirmed several
expectations. For constant learning rates, synaptic
weights never precisely converged to the proper
eigenvectors, though they were nearly collinear, as
evidenced by the low mean squared error
calculations. In order to ensure total convergence, it
was necessary to implement time-dependent learning
rates that approached zero over time. Without the
time-dependency, weights tended to ‘quiver’ around

a given eigenvector, as each presented input affected
the weights in a constant manner. It was also
necessary to either duplicate our input matrix several
times or oversample a single input matrix in order to
reach an appropriate number of iterations for
convergence. In BCM implementation, this latter
point was further exacerbated.

Challenges in implementation pertained to extending
our model past two dimensions. Images sit in high-
dimensional space (in this case, 10000-D space), and
it was necessary to adjust parameters—especially
synaptic decay terms—accordingly. Extending the
BCM rule to image space, in particular, required
squeezing the squared term through a hyperbolic
tangent function in order to maintain relative
stability. Our BCM implementation is highly
sensitive to small changes in parameters, and further
investigation is necessary to assure a more robust
implementation.

The BCM results do not lend themselves to easy
interpretation. While the first few weights appear to
code for complex features, the sixth weight seems to
code for the mean face. As the inputs were not zero-
meaned in the case of the first BCM implementation,
it was possible that we would achieve different
results with zero-meaned data. However, in zero-
meaning our data, we achieved the results in Figure
5, in which the latter features appeared to converge
to the first eigenvector, while the first few
‘components’ failed to converge with the present
number of iterations. It is difficult to speculate as to
why this might be the case, and more investigation is
necessary to determine the appropriate functional
relationships therein. Future work in extending the
BCM model to higher dimensions and multiple
outputs could provide new insight into biologically
plausible encoding of such stimuli.

Acknowledgements

The authors wish to thank Dr. Elie Bienenstock for
his valuable input in implementing the BCM rule for
higher dimensions.

References

Bienenstock, E. L., Cooper, L. N., & Munro, P. W.
(1982). Theory for the development of neuron
selectivity: orientation specificity and binocular

interaction in visual cortex. The Journal of
Neuroscience, 2(1), 32-48.

Ebied, H. M., Revett, K., & Tolba, M. F. (2012).
Evaluation of unsupervised feature extraction neural
networks for face recognition. Neural Computing and
Applications, 1-12.

Face and Gesture Working Group. “FG-Net Aging Data
Base.” http://www-
prima.inrialpes.fr/FGnet/html/benchmarks.html

Hebb, D. O. (1949). The organization of behavior: A
neuropsychological approach. John Wiley & Sons.

Oja, E. (1982). Simplified neuron model as a principal
component analyzer. Journal of mathematical
biology, 15(3), 267-273.

Qiu, J., Wang, H., Lu, J., Zhang, B., & Du, K. L. (2012).
Neural Network Implementations for PCA and Its
Extensions. ISRN Artificial Intelligence, 2012.

Sanger, T. D. (1989). Optimal unsupervised learning in a
single-layer linear feedforward neural network.
Neural networks, 2(6), 459-473.

Wang, C. W., & Jeng, J. H. (2012, November). Image
compression using PCA with clustering. In Intelligent
Signal Processing and Communications Systems
(ISPACS), 2012 International Symposium on (pp.
458-462). IEEE.

