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Part 1
Motivation

The violin has captivated physicists, notably Hermann von Helmholtz. As the instrument that
sounds closest to the human voice, the violin is one of the most captivating and unique musical
instruments. Apart from most string instruments, which are plucked, the violin is bowed; This
means the musician draws a bow of horsehair over the string. The tone produced can vary greatly
depending on the bowing technique used: spiccato, legato, détaché, sul ponticello, etc. As a violin
player myself, it is very interesting to consider how the physical parameters that shape the tone
produced by a bowed string.

Part II
Plucked strings

To begin to understand the physics of bowed string motion I first modeled the motion of a plucked
string. For any string, the central equation of wave motion is given as
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Where c¢ is the wave velocity. Next, we consider the string as a series of discrete elements, such
that each element has a length Az and mass pAx, where p is the mass per unit length. If we rewrite
Equation (0.1) in terms of a single string element and multiply by the mass of a string element,
pAz, we get
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Incidentally, the left hand side of Equation (0.2) is just mass times the acceleration of the string
element 4, or simply the force on this string element. The right hand side of Equation (0.2) is the
transverse component of the tension force on element ¢ from its two adjacent elements. Writing

this wave equation in finite difference form, we get
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Where i is the length along the string, n is the time step, and r = %‘;. Using this equation,
I can succesfully model the motion of a plucked string. Since we are dealing with a second-order
differential equation, we require two initial conditions (i.e string profiles at times n = 0,1). To
do so, I modeled the initial pluck by giving the string a triangular profile, yo, described by an
amplitude and where along the string it is plucked and assumed that the string is held fixed with

shape yo(x) prior to ¢ = 0. The pseudocode for modeling the motion of a plucked string is below.

Pseudocode for plucked string motion

e Set the parameter combination r = %‘;

e For each time step n

— Loop through the interior points along the string’s length ¢ = 1 through ¢« = M — 1,
excluding the ends of the string, which are fixed at a displacement of y(0,n) = y(M,n) =
0

— Update the interior points’ displacement according to Equation (0.3)
* y(lan—i_ 1) =2 [1 - 712] y(lan) - y(z,n - 1) +T2 [y(l—i_ 17”) +y(l - 17”)]
— The ends of the string at ¢ = 0 and ¢ = M are fixed so y(0,n) = y(M,n) = 0 for all time

steps n

Using this, I simulated the motion of a plucked violin string according to an initial triangular string
profile. My results are shown below.
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Figure 0.1: Motion of a perfectly flexible, plucked violin string

For the simulation, ¢ or wave velocity is constant throughout the length of the string because
violin strings are typically of uniform thickness and weight along their length. As is expected, after
the string is released the initial kink in the string splits into two seperate kinks which propagate



towards either end of the violin string. These kinks are reflected and inverted at the ends and after
one half of a period they add together as an inverted version of the initial pluck.

In real life however, violin strings are not perfectly flexible and there will always be a stiffness
force that opposes the bending of the string. Stiffness is added to the model by adding a term to
the original wave equation and the corresponding finite difference form where € is the stiffness and
M is the number of spatial units (e M = ).
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Since Equation (0.5) involves the displacement at sites £2 units away from the site in question
means we have to alter our boundary conditions. As used in the detailed modeling of piano strings,
I assumed that the ends of the string are “hinged” [1]. This means we take the displacement at
each end to be zero and assume there are phantom locations one unit beyond the ends which have
displacements that are opposite the displacements at locations one unit inside the ends. In other
words, the string ends have displacement y(0,n) = y(M,n) = 0 as usual, and the phantom locations
have displacement corresponding to y(—1,n) = —y(1,n) and y(M + 1,n) = —y(M — 1,n).
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Figure 0.2: Motion of a slightly stiff, plucked violin string (e = 1 x 1075)

As is expected, the motion of a slighly stiff, plucked violin string is very similar to Figure 0.1.
However, you can see the effect of string stiffness at the wave peak, which is more rounded than
that of the perfectly flexible, plucked violin string.



Part III
Bowed string motion

As described by Helmholtz, bowed string motion consists of a “stick-slip” process as the bow’s
horsehair “sticks” to the string until the tension from the string overcomes the frictional forces
between the horsehair and the string, at which point the bow’s horsehair begins to “slip” across
the string. Helmholtz discovered that the frequency of bowed string motion is the same as the as
a plucked string.

We assume that the string is bowed at a point that is a distance SL from the end of the string,
where [ is a ratio of the string length, L. As the bow begins to move across the string at time
t = 0, the string “sticks” and moves with a velocity equivalent to that of the bow, namely vpoy.
This abrupt transition to sticking excites waves that travel away from the point of contact with
the bow towards the two ends of the string. These waves are reflected and result in an additional
force between the bow and the string that can cause string to “slip” from the bow (if the force is
large enough). We assume that there are two coefficients of friction, one when the string is either
“sticking” us, and one when the string is slipping, pg. For stick-slip motion to occur pg > pg, which
makes sense since the coefficient of kinetic friction is almost always greater than the coefficient of
static friction.

To create our equation of motion, we reuse the single element wave equation, Equation (0.2). If
we include an externally applied force, Fj,, (such as the friction force produced by a bow), we can
simply add it to the right hand side of Equation (0.2).
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If we include string stiffness and put the resulting equation into finite difference form, we have
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Depending on whether the string is slipping, the external force F}, will change in Equation (0.8).
When the string is slipping the force has magnitude

Fslip = ,ukN (09)

and when the string is sticking we know that the force is no greater than ugN, thus



Fstick S ,UfsN (010)

where N is the normal force. The pseudocode for modeling the motion of a bowed string is
below.

Pseudocode for bowed string motion

e Let the velocity of the bow be vy, and the string displacement at the bowing point be
Y(ibow, n) where n is the time step

— Start with the string in the “sticking” state, with the string velocity at the bowing point
equal to Vpow

— Advance one time step and assume that the string continues to stick: y(ipow,n + 1) =
Y(ibow, M) + Vbow At

— Use Equation (0.8) to calculate the value of the force required to obtain y(ipew,n + 1).

If the required force is less than the limit in Equation (0.10), then the string continues
in the “sticking” mode

— If the required force is larger than the limit in Equation (0.10), then the string goes into
the “slipping” mode and the force is given by Equation (0.9). One must then recalculate
Y(ipow,n + 1) using Equation (0.8) with the force Fy,

— The motion of the rest of the string is calculated as before with Equation (0.8) using an
external force of zero, F, =0

— Repeat this procedure for the desired number of time steps

Using this, I simulated the motion of a bowed string



String displacement

Figure 0.3: Motion of a slightly stiff, bowed violin string. The parameters used here are L = 0.15
m, # = 0.06, Az = 0.06 mm, ¢ = 300=, r = 0.25, us = 0.9, p1 = 0.55, p2 = 0.35, Vpow = 0.277,

e=1%1075 and N = 0.65 N. I calculated py, using py = prexp (

String displacement versus time

N o=
S 5

Length along string
&8 8

@
g
T

Frequency spectrum of bowed string

0.012 T T

\ |
A A A A A A A - ]
/ 1 0.008 [ 1
550 10‘00 15‘00 ZD‘DO 25‘00 SU‘DO 35‘00 A;DO o
Time steps =
g 0.006 - 1
String displacement at bow versus time H
0.004 |
0.002 - B
SA‘]O 1000 15:00 20‘00 25‘00 30‘00 35:00 4000 00 20‘00 40‘00 60‘00 60‘00 10(‘)00 12(;00 14‘000 16000
Time steps Frequency (Hz)
String displacement at bow versus time
0.1 T T T T T
.. 0.08
=
g
S 0.06
o
k]
3 0.04F
2
j=2)
£ 0.02F
7]
o -
1 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900 1000
Time steps
State of bow across string
Sticking ; ‘ ‘ - - .
Slipping . . . . -— - " . -
100 200 300 400 500 600 700 800 900 1000

—Vbow
V1

) + p2 where vy = 0.1



String displacement versus time
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Figure 0.4: Motion of a slightly stiff, bowed violin string. The parameters used here are the same

as before but with L = 0.3 m
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Figure 0.5: Motion of a slightly stiff, bowed violin string. The parameters used here are the same as
before but with the bow position moved towards the bridge, 5 = 0.02. This is to simulate playing
using the “sul ponticello” technique, which means “on the bridge” in Italian. Bowing the string over
the bridge makes it virtually impossible to set up stable, regular Helmholtz motion, and rather easy
to excite, at least briefly, some harmonic Helmholtz motion. Notice how the frequency spectrum
changes, gaining many high frequency harmonics and having a weak fundamental frequency. This
illustrates why playing “sul ponticello” results in an eerie sound that sounds weak and thin and is

full of high frequency harmonics.
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Figure 0.6: Motion of a slightly stiff, bowed violin string. The parameters used here are the same
as before but with the the friction coefficients decreased drastically: pq = 0.25 and ps = 0.15. This
is to simulate playing without rosin, a sticky substance used to increase the horsehair’s stickiness.
It is very similar to playing with rosin and the frequency spectrum validates this.
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