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Part I

Motivation

The violin has aptivated physiists, notably Hermann von Helmholtz. As the instrument that

sounds losest to the human voie, the violin is one of the most aptivating and unique musial

instruments. Apart from most string instruments, whih are pluked, the violin is bowed; This

means the musiian draws a bow of horsehair over the string. The tone produed an vary greatly

depending on the bowing tehnique used: spiato, legato, détahé, sul pontiello, et. As a violin

player myself, it is very interesting to onsider how the physial parameters that shape the tone

produed by a bowed string.

Part II

Pluked strings

To begin to understand the physis of bowed string motion I �rst modeled the motion of a pluked

string. For any string, the entral equation of wave motion is given as

δ2y

δt2
= c2

δ2y

δx2
(0.1)

Where c is the wave veloity. Next, we onsider the string as a series of disrete elements, suh

that eah element has a length ∆x and mass µ∆x, where µ is the mass per unit length. If we rewrite

Equation (0.1) in terms of a single string element and multiply by the mass of a string element,

µ∆x, we get

(µ∆x)
δ2y(i)

δt2
= (µ∆x) c2

δ2y(i)

δx2
(0.2)

Inidentally, the left hand side of Equation (0.2) is just mass times the aeleration of the string

element i, or simply the fore on this string element. The right hand side of Equation (0.2) is the

transverse omponent of the tension fore on element i from its two adjaent elements. Writing

this wave equation in �nite di�erene form, we get
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y(i, n+ 1) = 2
[

1− r2
]

y(i, n)− y(i, n− 1) + r2 [y(i+ 1, n) + y(i − 1, n)] (0.3)

Where i is the length along the string, n is the time step, and r ≡ c∆t
∆x

. Using this equation,

I an suesfully model the motion of a pluked string. Sine we are dealing with a seond-order

di�erential equation, we require two initial onditions (i.e string pro�les at times n = 0, 1). To

do so, I modeled the initial pluk by giving the string a triangular pro�le, y0, desribed by an

amplitude and where along the string it is pluked and assumed that the string is held �xed with

shape y0(x) prior to t = 0. The pseudoode for modeling the motion of a pluked string is below.

Pseudoode for pluked string motion

• Set the parameter ombination r = c∆t
∆x

• For eah time step n

� Loop through the interior points along the string's length i = 1 through i = M − 1,
exluding the ends of the string, whih are �xed at a displaement of y(0, n) = y(M,n) =
0

� Update the interior points' displaement aording to Equation (0.3)

∗ y(i, n+ 1) = 2
[

1− r2
]

y(i, n)− y(i, n− 1) + r2 [y(i+ 1, n) + y(i− 1, n)]

� The ends of the string at i = 0 and i = M are �xed so y(0, n) = y(M,n) = 0 for all time

steps n

Using this, I simulated the motion of a pluked violin string aording to an initial triangular string

pro�le. My results are shown below.
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Figure 0.1: Motion of a perfetly �exible, pluked violin string

For the simulation, c or wave veloity is onstant throughout the length of the string beause

violin strings are typially of uniform thikness and weight along their length. As is expeted, after

the string is released the initial kink in the string splits into two seperate kinks whih propagate
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towards either end of the violin string. These kinks are re�eted and inverted at the ends and after

one half of a period they add together as an inverted version of the initial pluk.

In real life however, violin strings are not perfetly �exible and there will always be a sti�ness

fore that opposes the bending of the string. Sti�ness is added to the model by adding a term to

the original wave equation and the orresponding �nite di�erene form where ǫ is the sti�ness and

M is the number of spatial units (i.e M = L
∆x

).

δ2y

δt2
= c2

(

δ2y

δx2
− ǫL2

δ4y

δx4

)

(0.4)

y(i, n+ 1) =
[

2− 2r2 − 6ǫr2M2
]

y(i, n)− y(i, n− 1) (0.5)

+r2
[

1 + 4ǫM2
]

[y(i+ 1, n) + y(i− 1, n)]

−ǫr2M2 [y(i+ 2, n) + y(i− 2, n)]

Sine Equation (0.5) involves the displaement at sites ±2 units away from the site in question

means we have to alter our boundary onditions. As used in the detailed modeling of piano strings,

I assumed that the ends of the string are �hinged� [1℄. This means we take the displaement at

eah end to be zero and assume there are phantom loations one unit beyond the ends whih have

displaements that are opposite the displaements at loations one unit inside the ends. In other

words, the string ends have displaement y(0, n) = y(M,n) = 0 as usual, and the phantom loations

have displaement orresponding to y(−1, n) = −y(1, n) and y(M + 1, n) = −y(M − 1, n).
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Figure 0.2: Motion of a slightly sti�, pluked violin string (ǫ = 1 ∗ 10−5
)

As is expeted, the motion of a slighly sti�, pluked violin string is very similar to Figure 0.1.

However, you an see the e�et of string sti�ness at the wave peak, whih is more rounded than

that of the perfetly �exible, pluked violin string.
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Part III

Bowed string motion

As desribed by Helmholtz, bowed string motion onsists of a �stik-slip� proess as the bow's

horsehair �stiks� to the string until the tension from the string overomes the fritional fores

between the horsehair and the string, at whih point the bow's horsehair begins to �slip� aross

the string. Helmholtz disovered that the frequeny of bowed string motion is the same as the as

a pluked string.

We assume that the string is bowed at a point that is a distane βL from the end of the string,

where β is a ratio of the string length, L. As the bow begins to move aross the string at time

t = 0, the string �stiks� and moves with a veloity equivalent to that of the bow, namely vbow.

This abrupt transition to stiking exites waves that travel away from the point of ontat with

the bow towards the two ends of the string. These waves are re�eted and result in an additional

fore between the bow and the string that an ause string to �slip� from the bow (if the fore is

large enough). We assume that there are two oe�ients of frition, one when the string is either

�stiking� µs, and one when the string is slipping, µk. For stik-slip motion to our µs > µk, whih

makes sense sine the oe�ient of kineti frition is almost always greater than the oe�ient of

stati frition.

To reate our equation of motion, we reuse the single element wave equation, Equation (0.2). If

we inlude an externally applied fore, Fh, (suh as the frition fore produed by a bow), we an

simply add it to the right hand side of Equation (0.2).

(µ∆x)
δ2y(i)

δt2
= (µ∆x) c2

δ2y(i)

δx2
+ Fh (0.6)

If we inlude string sti�ness and put the resulting equation into �nite di�erene form, we have

(µ∆x)
δ2y

δt2
= (µ∆x) c2

(

δ2y

δx2
− ǫL2

δ4y

δx4

)

+ Fh (0.7)

y(i, n+ 1) =
[

2− 2r2 − 6ǫr2M2
]

y(i, n)− y(i, n− 1) (0.8)

+r2
[

1 + 4ǫM2
]

[y(i+ 1, n) + y(i− 1, n)]

−ǫr2M2 [y(i+ 2, n) + y(i− 2, n)]

+
(∆t)

2

µ∆x
Fh

Depending on whether the string is slipping, the external fore Fh will hange in Equation (0.8).

When the string is slipping the fore has magnitude

Fslip = µkN (0.9)

and when the string is stiking we know that the fore is no greater than µSN , thus
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Fstick ≤ µsN (0.10)

where N is the normal fore. The pseudoode for modeling the motion of a bowed string is

below.

Pseudoode for bowed string motion

• Let the veloity of the bow be vbow, and the string displaement at the bowing point be

y(ibow, n) where n is the time step

� Start with the string in the �stiking� state, with the string veloity at the bowing point

equal to vbow

� Advane one time step and assume that the string ontinues to stik: y(ibow, n + 1) =
y(ibow, n) + vbow∆t

� Use Equation (0.8) to alulate the value of the fore required to obtain y(ibow, n + 1).
If the required fore is less than the limit in Equation (0.10), then the string ontinues

in the �stiking� mode

� If the required fore is larger than the limit in Equation (0.10), then the string goes into

the �slipping� mode and the fore is given by Equation (0.9). One must then realulate

y(ibow, n+ 1) using Equation (0.8) with the fore Fslip

� The motion of the rest of the string is alulated as before with Equation (0.8) using an

external fore of zero, Fh = 0

� Repeat this proedure for the desired number of time steps

Using this, I simulated the motion of a bowed string
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String displacement versus time
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Figure 0.3: Motion of a slightly sti�, bowed violin string. The parameters used here are L = 0.15
m, β = 0.06, ∆x = 0.06 mm, c = 300m

s
, r = 0.25, µs = 0.9, µ1 = 0.55, µ2 = 0.35, vbow = 0.2m

s
,

ǫ = 1 ∗ 10−5
, and N = 0.65 N. I alulated µk using µk = µ1exp

(

−vbow
v1

)

+ µ2 where v1 = 0.1m
s
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String displacement versus time
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Figure 0.4: Motion of a slightly sti�, bowed violin string. The parameters used here are the same

as before but with L = 0.3 m
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String displacement versus time
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Figure 0.5: Motion of a slightly sti�, bowed violin string. The parameters used here are the same as

before but with the bow position moved towards the bridge, β = 0.02. This is to simulate playing

using the �sul pontiello� tehnique, whih means �on the bridge� in Italian. Bowing the string over

the bridge makes it virtually impossible to set up stable, regular Helmholtz motion, and rather easy

to exite, at least brie�y, some harmoni Helmholtz motion. Notie how the frequeny spetrum

hanges, gaining many high frequeny harmonis and having a weak fundamental frequeny. This

illustrates why playing �sul pontiello� results in an eerie sound that sounds weak and thin and is

full of high frequeny harmonis.
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Figure 0.6: Motion of a slightly sti�, bowed violin string. The parameters used here are the same

as before but with the the frition oe�ients dereased drastially: µ1 = 0.25 and µ2 = 0.15. This
is to simulate playing without rosin, a stiky substane used to inrease the horsehair's stikiness.

It is very similar to playing with rosin and the frequeny spetrum validates this.
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