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Part I

Motivation

The violin has 
aptivated physi
ists, notably Hermann von Helmholtz. As the instrument that

sounds 
losest to the human voi
e, the violin is one of the most 
aptivating and unique musi
al

instruments. Apart from most string instruments, whi
h are plu
ked, the violin is bowed; This

means the musi
ian draws a bow of horsehair over the string. The tone produ
ed 
an vary greatly

depending on the bowing te
hnique used: spi

ato, legato, déta
hé, sul ponti
ello, et
. As a violin

player myself, it is very interesting to 
onsider how the physi
al parameters that shape the tone

produ
ed by a bowed string.

Part II

Plu
ked strings

To begin to understand the physi
s of bowed string motion I �rst modeled the motion of a plu
ked

string. For any string, the 
entral equation of wave motion is given as

δ2y

δt2
= c2

δ2y

δx2
(0.1)

Where c is the wave velo
ity. Next, we 
onsider the string as a series of dis
rete elements, su
h

that ea
h element has a length ∆x and mass µ∆x, where µ is the mass per unit length. If we rewrite

Equation (0.1) in terms of a single string element and multiply by the mass of a string element,

µ∆x, we get

(µ∆x)
δ2y(i)

δt2
= (µ∆x) c2

δ2y(i)

δx2
(0.2)

In
identally, the left hand side of Equation (0.2) is just mass times the a

eleration of the string

element i, or simply the for
e on this string element. The right hand side of Equation (0.2) is the

transverse 
omponent of the tension for
e on element i from its two adja
ent elements. Writing

this wave equation in �nite di�eren
e form, we get
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y(i, n+ 1) = 2
[

1− r2
]

y(i, n)− y(i, n− 1) + r2 [y(i+ 1, n) + y(i − 1, n)] (0.3)

Where i is the length along the string, n is the time step, and r ≡ c∆t
∆x

. Using this equation,

I 
an su

esfully model the motion of a plu
ked string. Sin
e we are dealing with a se
ond-order

di�erential equation, we require two initial 
onditions (i.e string pro�les at times n = 0, 1). To

do so, I modeled the initial plu
k by giving the string a triangular pro�le, y0, des
ribed by an

amplitude and where along the string it is plu
ked and assumed that the string is held �xed with

shape y0(x) prior to t = 0. The pseudo
ode for modeling the motion of a plu
ked string is below.

Pseudo
ode for plu
ked string motion

• Set the parameter 
ombination r = c∆t
∆x

• For ea
h time step n

� Loop through the interior points along the string's length i = 1 through i = M − 1,
ex
luding the ends of the string, whi
h are �xed at a displa
ement of y(0, n) = y(M,n) =
0

� Update the interior points' displa
ement a

ording to Equation (0.3)

∗ y(i, n+ 1) = 2
[

1− r2
]

y(i, n)− y(i, n− 1) + r2 [y(i+ 1, n) + y(i− 1, n)]

� The ends of the string at i = 0 and i = M are �xed so y(0, n) = y(M,n) = 0 for all time

steps n

Using this, I simulated the motion of a plu
ked violin string a

ording to an initial triangular string

pro�le. My results are shown below.
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Figure 0.1: Motion of a perfe
tly �exible, plu
ked violin string

For the simulation, c or wave velo
ity is 
onstant throughout the length of the string be
ause

violin strings are typi
ally of uniform thi
kness and weight along their length. As is expe
ted, after

the string is released the initial kink in the string splits into two seperate kinks whi
h propagate
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towards either end of the violin string. These kinks are re�e
ted and inverted at the ends and after

one half of a period they add together as an inverted version of the initial plu
k.

In real life however, violin strings are not perfe
tly �exible and there will always be a sti�ness

for
e that opposes the bending of the string. Sti�ness is added to the model by adding a term to

the original wave equation and the 
orresponding �nite di�eren
e form where ǫ is the sti�ness and

M is the number of spatial units (i.e M = L
∆x

).

δ2y

δt2
= c2

(

δ2y

δx2
− ǫL2

δ4y

δx4

)

(0.4)

y(i, n+ 1) =
[

2− 2r2 − 6ǫr2M2
]

y(i, n)− y(i, n− 1) (0.5)

+r2
[

1 + 4ǫM2
]

[y(i+ 1, n) + y(i− 1, n)]

−ǫr2M2 [y(i+ 2, n) + y(i− 2, n)]

Sin
e Equation (0.5) involves the displa
ement at sites ±2 units away from the site in question

means we have to alter our boundary 
onditions. As used in the detailed modeling of piano strings,

I assumed that the ends of the string are �hinged� [1℄. This means we take the displa
ement at

ea
h end to be zero and assume there are phantom lo
ations one unit beyond the ends whi
h have

displa
ements that are opposite the displa
ements at lo
ations one unit inside the ends. In other

words, the string ends have displa
ement y(0, n) = y(M,n) = 0 as usual, and the phantom lo
ations

have displa
ement 
orresponding to y(−1, n) = −y(1, n) and y(M + 1, n) = −y(M − 1, n).
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Figure 0.2: Motion of a slightly sti�, plu
ked violin string (ǫ = 1 ∗ 10−5
)

As is expe
ted, the motion of a slighly sti�, plu
ked violin string is very similar to Figure 0.1.

However, you 
an see the e�e
t of string sti�ness at the wave peak, whi
h is more rounded than

that of the perfe
tly �exible, plu
ked violin string.
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Part III

Bowed string motion

As des
ribed by Helmholtz, bowed string motion 
onsists of a �sti
k-slip� pro
ess as the bow's

horsehair �sti
ks� to the string until the tension from the string over
omes the fri
tional for
es

between the horsehair and the string, at whi
h point the bow's horsehair begins to �slip� a
ross

the string. Helmholtz dis
overed that the frequen
y of bowed string motion is the same as the as

a plu
ked string.

We assume that the string is bowed at a point that is a distan
e βL from the end of the string,

where β is a ratio of the string length, L. As the bow begins to move a
ross the string at time

t = 0, the string �sti
ks� and moves with a velo
ity equivalent to that of the bow, namely vbow.

This abrupt transition to sti
king ex
ites waves that travel away from the point of 
onta
t with

the bow towards the two ends of the string. These waves are re�e
ted and result in an additional

for
e between the bow and the string that 
an 
ause string to �slip� from the bow (if the for
e is

large enough). We assume that there are two 
oe�
ients of fri
tion, one when the string is either

�sti
king� µs, and one when the string is slipping, µk. For sti
k-slip motion to o

ur µs > µk, whi
h

makes sense sin
e the 
oe�
ient of kineti
 fri
tion is almost always greater than the 
oe�
ient of

stati
 fri
tion.

To 
reate our equation of motion, we reuse the single element wave equation, Equation (0.2). If

we in
lude an externally applied for
e, Fh, (su
h as the fri
tion for
e produ
ed by a bow), we 
an

simply add it to the right hand side of Equation (0.2).

(µ∆x)
δ2y(i)

δt2
= (µ∆x) c2

δ2y(i)

δx2
+ Fh (0.6)

If we in
lude string sti�ness and put the resulting equation into �nite di�eren
e form, we have

(µ∆x)
δ2y

δt2
= (µ∆x) c2

(

δ2y

δx2
− ǫL2

δ4y

δx4

)

+ Fh (0.7)

y(i, n+ 1) =
[

2− 2r2 − 6ǫr2M2
]

y(i, n)− y(i, n− 1) (0.8)

+r2
[

1 + 4ǫM2
]

[y(i+ 1, n) + y(i− 1, n)]

−ǫr2M2 [y(i+ 2, n) + y(i− 2, n)]

+
(∆t)

2

µ∆x
Fh

Depending on whether the string is slipping, the external for
e Fh will 
hange in Equation (0.8).

When the string is slipping the for
e has magnitude

Fslip = µkN (0.9)

and when the string is sti
king we know that the for
e is no greater than µSN , thus
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Fstick ≤ µsN (0.10)

where N is the normal for
e. The pseudo
ode for modeling the motion of a bowed string is

below.

Pseudo
ode for bowed string motion

• Let the velo
ity of the bow be vbow, and the string displa
ement at the bowing point be

y(ibow, n) where n is the time step

� Start with the string in the �sti
king� state, with the string velo
ity at the bowing point

equal to vbow

� Advan
e one time step and assume that the string 
ontinues to sti
k: y(ibow, n + 1) =
y(ibow, n) + vbow∆t

� Use Equation (0.8) to 
al
ulate the value of the for
e required to obtain y(ibow, n + 1).
If the required for
e is less than the limit in Equation (0.10), then the string 
ontinues

in the �sti
king� mode

� If the required for
e is larger than the limit in Equation (0.10), then the string goes into

the �slipping� mode and the for
e is given by Equation (0.9). One must then re
al
ulate

y(ibow, n+ 1) using Equation (0.8) with the for
e Fslip

� The motion of the rest of the string is 
al
ulated as before with Equation (0.8) using an

external for
e of zero, Fh = 0

� Repeat this pro
edure for the desired number of time steps

Using this, I simulated the motion of a bowed string
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String displacement versus time
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Figure 0.3: Motion of a slightly sti�, bowed violin string. The parameters used here are L = 0.15
m, β = 0.06, ∆x = 0.06 mm, c = 300m

s
, r = 0.25, µs = 0.9, µ1 = 0.55, µ2 = 0.35, vbow = 0.2m

s
,

ǫ = 1 ∗ 10−5
, and N = 0.65 N. I 
al
ulated µk using µk = µ1exp

(

−vbow
v1

)

+ µ2 where v1 = 0.1m
s
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String displacement versus time
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Figure 0.4: Motion of a slightly sti�, bowed violin string. The parameters used here are the same

as before but with L = 0.3 m
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String displacement versus time

Time steps

Le
ng

th
 a

lo
ng

 s
tr

in
g

0 500 1000 1500 2000 2500 3000 3500 4000

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000 3500 4000
−0.05

0

0.05

0.1

0.15

Time steps

S
tr

in
g 

di
sp

la
ce

m
en

t

String displacement at bow versus time

0 2000 4000 6000 8000 10000 12000 14000 16000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

Frequency (Hz)

P
ow

er
 (

dB
)

Frequency spectrum of bowed string

Figure 0.5: Motion of a slightly sti�, bowed violin string. The parameters used here are the same as

before but with the bow position moved towards the bridge, β = 0.02. This is to simulate playing

using the �sul ponti
ello� te
hnique, whi
h means �on the bridge� in Italian. Bowing the string over

the bridge makes it virtually impossible to set up stable, regular Helmholtz motion, and rather easy

to ex
ite, at least brie�y, some harmoni
 Helmholtz motion. Noti
e how the frequen
y spe
trum


hanges, gaining many high frequen
y harmoni
s and having a weak fundamental frequen
y. This

illustrates why playing �sul ponti
ello� results in an eerie sound that sounds weak and thin and is

full of high frequen
y harmoni
s.

String displacement versus time
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Figure 0.6: Motion of a slightly sti�, bowed violin string. The parameters used here are the same

as before but with the the fri
tion 
oe�
ients de
reased drasti
ally: µ1 = 0.25 and µ2 = 0.15. This
is to simulate playing without rosin, a sti
ky substan
e used to in
rease the horsehair's sti
kiness.

It is very similar to playing with rosin and the frequen
y spe
trum validates this.
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